52 research outputs found

    Sharp estimates for metastable lifetimes in parabolic SPDEs: Kramers' law and beyond

    Full text link
    We prove a Kramers-type law for metastable transition times for a class of one-dimensional parabolic stochastic partial differential equations (SPDEs) with bistable potential. The expected transition time between local minima of the potential energy depends exponentially on the energy barrier to overcome, with an explicit prefactor related to functional determinants. Our results cover situations where the functional determinants vanish owing to a bifurcation, thereby rigorously proving the results of formal computations announced in [Berglund and Gentz, J. Phys. A 42:052001 (2009)]. The proofs rely on a spectral Galerkin approximation of the SPDE by a finite-dimensional system, and on a potential-theoretic approach to the computation of transition times in finite dimension.Comment: 64 pages, 4 figure

    Pathwise description of dynamic pitchfork bifurcations with additive noise

    Get PDF
    The slow drift (with speed \eps) of a parameter through a pitchfork bifurcation point, known as the dynamic pitchfork bifurcation, is characterized by a significant delay of the transition from the unstable to the stable state. We describe the effect of an additive noise, of intensity σ\sigma, by giving precise estimates on the behaviour of the individual paths. We show that until time \sqrt\eps after the bifurcation, the paths are concentrated in a region of size \sigma/\eps^{1/4} around the bifurcating equilibrium. With high probability, they leave a neighbourhood of this equilibrium during a time interval [\sqrt\eps, c\sqrt{\eps\abs{\log\sigma}}], after which they are likely to stay close to the corresponding deterministic solution. We derive exponentially small upper bounds for the probability of the sets of exceptional paths, with explicit values for the exponents.Comment: 47 pages, 3 figure

    On the noise-induced passage through an unstable periodic orbit I: Two-level model

    Get PDF
    We consider the problem of stochastic exit from a planar domain, whose boundary is an unstable periodic orbit, and which contains a stable periodic orbit. This problem arises when investigating the distribution of noise-induced phase slips between synchronized oscillators, or when studying stochastic resonance far from the adiabatic limit. We introduce a simple, piecewise linear model equation, for which the distribution of first-passage times can be precisely computed. In particular, we obtain a quantitative description of the phenomenon of cycling: The distribution of first-passage times rotates around the unstable orbit, periodically in the logarithm of the noise intensity, and thus does not converge in the zero-noise limit. We compute explicitly the cycling profile, which is universal in the sense that in depends only on the product of the period of the unstable orbit with its Lyapunov exponent.Comment: 32 pages, 7 figure

    Hunting French Ducks in a Noisy Environment

    Get PDF
    We consider the effect of Gaussian white noise on fast-slow dynamical systems with one fast and two slow variables, containing a folded-node singularity. In the absence of noise, these systems are known to display mixed-mode oscillations, consisting of alternating large- and small-amplitude oscillations. We quantify the effect of noise and obtain critical noise intensities above which the small-amplitude oscillations become hidden by fluctuations. Furthermore we prove that the noise can cause sample paths to jump away from so-called canard solutions with high probability before deterministic orbits do. This early-jump mechanism can drastically influence the local and global dynamics of the system by changing the mixed-mode patterns.Comment: 60 pages, 9 figure

    From random Poincar\'e maps to stochastic mixed-mode-oscillation patterns

    Full text link
    We quantify the effect of Gaussian white noise on fast--slow dynamical systems with one fast and two slow variables, which display mixed-mode oscillations owing to the presence of a folded-node singularity. The stochastic system can be described by a continuous-space, discrete-time Markov chain, recording the returns of sample paths to a Poincar\'e section. We provide estimates on the kernel of this Markov chain, depending on the system parameters and the noise intensity. These results yield predictions on the observed random mixed-mode oscillation patterns. Our analysis shows that there is an intricate interplay between the number of small-amplitude oscillations and the global return mechanism. In combination with a local saturation phenomenon near the folded node, this interplay can modify the number of small-amplitude oscillations after a large-amplitude oscillation. Finally, sufficient conditions are derived which determine when the noise increases the number of small-amplitude oscillations and when it decreases this number.Comment: 56 pages, 14 figures; revised versio

    The effect of additive noise on dynamical hysteresis

    Get PDF
    We investigate the properties of hysteresis cycles produced by a one-dimensional, periodically forced Langevin equation. We show that depending on amplitude and frequency of the forcing and on noise intensity, there are three qualitatively different types of hysteresis cycles. Below a critical noise intensity, the random area enclosed by hysteresis cycles is concentrated near the deterministic area, which is different for small and large driving amplitude. Above this threshold, the area of typical hysteresis cycles depends, to leading order, only on the noise intensity. In all three regimes, we derive mathematically rigorous estimates for expectation, variance, and the probability of deviations of the hysteresis area from its typical value

    Metastability in simple climate models: Pathwise analysis of slowly driven Langevin equations

    Get PDF
    We consider simple stochastic climate models, described by slowly time-dependent Langevin equations. We show that when the noise intensity is not too large, these systems can spend substantial amounts of time in metastable equilibrium, instead of adiabatically following the stationary distribution of the frozen system. This behaviour can be characterized by describing the location of typical paths, and bounding the probability of atypical paths. We illustrate this approach by giving a quantitative description of phenomena associated with bistability, for three famous examples of simple climate models: Stochastic resonance in an energy balance model describing Ice Ages, hysteresis in a box model for the Atlantic thermohaline circulation, and bifurcation delay in the case of the Lorenz model for Rayleigh-B'enard convection

    Geometric singular perturbation theory for stochastic differential equations

    Get PDF
    We consider slow-fast systems of differential equations, in which both the slow and fast variables are perturbed by additive noise. When the deterministic system admits a uniformly asymptotically stable slow manifold, we show that the sample paths of the stochastic system are concentrated in a neighbourhood of the slow manifold, which we construct explicitly. Depending on the dynamics of the reduced system, the results cover time spans which can be exponentially long in the noise intensity squared (that is, up to Kramers' time). We give exponentially small upper and lower bounds on the probability of exceptional paths. If the slow manifold contains bifurcation points, we show similar concentration properties for the fast variables corresponding to non-bifurcating modes. We also give conditions under which the system can be approximated by a lower-dimensional one, in which the fast variables contain only bifurcating modes
    • 

    corecore